

JMConsulting-Rock Engineering

TBM "Boreability" in Hard Rock

Javier Macias, PhD

Rock Engineering Consultant and Researcher JMConsulting-Rock Engineering AS

Anvendt bergmekanikk 10.01.2018, Trondheim

NORSK BERGMEKANIKKGRUPPE

Outline

- Introduction
- What is rock boreability?
- Drillability
- Rock mass assessments
- Conclusive remarks

Tunnel Boring Machine (TBM)

TBMs in faulted rock

4

Open TBM for hard rock <u>www.herrenknecht.com</u>

Cutterhead and cutter discs

7

Cutterhead and cutter discs

Hard rock tunnel boring

Hard rock tunnel boring

Rock boreability

• TBM boreability can be defined as :

The resistance (in terms of ease or difficulty) encountered by a TBM as it penetrates a rock mass (intact rock containing planes of weakness)

- Intact rock Drillability
- Rock mass

Rock boreability

"Ability of the *intact rock* to be drilled or bored"

"Influence that intact rock properties on performance prediction and cost evaluations"

Breakability

Abrasivity

Main intact rock properties

- □ Strength
- Brittleness
- Surface hardness
- Wear capacity

Main intact rock properties

- □ Strength
- Brittleness
- Surface hardn
- Wear capacity

Main intact rock properties

- **G** Strength
- Brittleness
- Surface hardness
- Wear capacity

- Main intact rock properties
- Strength
- Brittleness
- □ Surface hardness
- Wear capacity

- Main intact rock properties
- **Strength**
- Brittleness
- Surface hardness
- Wear capacity

Laboratory test methods: "Breakability"

Laboratory test methods: "Breakability"

Laboratory test methods: "Abrasivity" Rock (AV/AVS) < 1 mm or soil (SAT) < 4 mm b) a) c) Suction assembly Weight 10 kg Vibrating Flow rate ~ 80g/min feeder Ħ 4 10/20m 30mi Rotating 2 steel disc AV : 100 rev./5 min. AVS: 20 rev./1 min. ជាច្រ 3 SAT: 20 rev./1 min. AV : Tungsten carbide r = 15mm AVS : Cutter ring steel 600 SAT : Cutter ring steel

Rock abrasivity testing

Cerchar abrasivity test

LCPC test

Abrasion Value cutter Steel (AVS) test

- Uniaxial Compressive Strength (UCS)
- Rock Toughness
- Drilling Rate Index (DRI)
- Cutter Life Index (CLI)
- > Cerchar (CAI)

Laboratory test methods: "Breakability"

Drilling Rate Index (DRI)

> Cutter Life Index (CLI)

- > Drilling Rate Index (DRI)
- Cutter Life Index (CLI)

Laboratory test methods "cutter wear"

8.5mm

• There is no single parameter that can fully represent the properties of jointed rock masses

Rock mass classification	Author	Year
Rock Quality Designation (RQD)	D.U. Deere	1964
Rock Mass Rating (RMR)	Mass Rating (RMR) Z.T. Bieniawki	
Rock Tunnelling Quality Index (Q)	ty Index (Q) N. Barton, R. Lien and J. Lunde	
Degree of fracturing (k_s factor)	NTNU (NTH)	1981
Rock Mass Index (RMi)	A. Palmström	1995
Geological Strength Index (GSI)	E. Hoek and E.T. Brown	1997

- In hard rock tunnel boring:
 - Discontinuities or planes of weakness in a rock mass contribute considerably to net penetration rate and cutter wear
 - Degree of fracturing
 - Orientation regarding to the tunnel alignment
 - Joint characteristics (filling, persistence...)
 - In/situ stress

Fracture Class (Sf)	Average spacing between fractures a _f (cm)	Range class (cm)	Degree of fracturing
0	∞	$480 - \infty$	Non-fractured
1	320	240 - 480	Extremely low
2	160	120 - 240	Very low
3	80	60 - 120	Low
4	40	30 - 60	Medium
5	20	15 - 30	High
6	10	7.5 – 15	Very high
7	5	4 – 7.5	Extremely high

Conclusive remarks

- 'Rock mass boreability' is a comprehensive parameter:
 - Intact rock properties
 - Rock mass parameters
- Rock mass fracturing is found to be the geological factor that exerts the greatest influence on net penetration rate
- More effort should be emphasized on understanding the rock breaking process and tool wear tribological system

Takk!

Javier.Macias@JMC-RockEng.com

Rock mass influence

Introduction

Objectives and research questions Research methodology Main results and discussion Main conclusions and outcomes

