

2019-01-09 - 2019-01-10

Instructors

Jessa Vatcher

Mikael Svartsjaern

Schedule

	Day 1: Tunnelling	Day 2: Mining
Morning 1 (2 hr)	Introduction to numerical modelling (why and how) Theoretical background FLAC3D Continuum vs discontinue Finite difference Starting with FLAC3D	 Application of modelling workflow: 1. Mesh generation Interfaces 1. Boundary conditions 2. Constitutive model and properties Theoretical Background FLAC3D Plasticity
Morning 2	 Application of modelling workflow: Mesh generation Boundary conditions Constitutive model and properties Initial loading 	 Application of modelling workflow: 4. Initial loading 5. History points 6. Running Theoretical background FLAC3D Explicit solution scheme
Afternoon 1	 Application of modelling workflow: 5. History points 6. Running Theoretical background FLAC3D Support elements 	 Theoretical background FLAC3D FISH and Python Application of modelling workflow: 5. Analysis and plotting
Afternoon 2	7. Analysis and plotting	Summary, discussion and questions

Itasca International Inc.

12 countries, approximately 170 employees

Itasca International Inc.

CĀ

Consultants AB

Itasca Sweden

- Consulting, research & software sales
- 10 employees
- Focus on civil, mining, and spent fuel repositories
- 3D model creation
- Numerical modelling and analysis
- Empirical design, feasibility studies
- Site investigation

Itasca's software

FLAC [®]
Explicit Continuum Modeling of Non-linear Material Behavior in 2D

FLAC3D™

MINEDW

Applications in 3D

Explicit Continuum Modeling of

Non-linear Material Behavior in 3D

Groundwater Flow Code for Mining

Distinct-Element Modeling of Jointed and Blocky Material in 2D

UDEC[™]

3DEC™ **Distinct-Element Modeling of**

Jointed and Blocky Material in 3D

PFC[™] **General Purpose Distinct-Element Modeling Framework**

INSITE[™] Integrated Acquisition Processing, Management and Visualisation of

Seismic and Acoustic Monitoring

Griddle[™] **Advanced Grid Generation Software** for Engineers

Geomechanical Software

Common Features:

- Large deformation
- **Tracks sequential** material failure
- Library of material behavior models
- Incorporates realistic geological features
- Dynamic capabilities
- Groundwater modeling
- Built-in scripting languages

Software Comparison

http://www.itascacg.com/software-comparison

Let's install the program!

Why do we use numerical modelling?

Approximation is ok Simple problems Well-studied problems Accuracy is important Interested in probabilistic approach Complex problems New problems

- 1. Define the problems and objectives
- 2. Create a conceptual model of the physical system, focus on simplifications
- 3. Construct and run model(s)
- 4. Interpret results

- Define the problems and _ objectives
- 2. Create a conceptual model of the physical system, focus on simplifications
- Construct and run model(s)
- 4. Interpret results

Why am I building this model?

What behaviour do I expect from the rock mass?

What should I be analyzing?

- Define the problems and objectives
- 2. Create a conceptual model of the physical system, focus on simplifications
- Construct and run model(s)
- 4. Interpret results

Focus on simplifications

How can I build a model to test this behaviour?

- Define the problems and objectives
- 2. Create a conceptual model of the physical system, focus on simplifications
- Construct and run model(s)
- 4. Interpret results

- 1. Mesh generation
- 2. Boundary conditions
- 3. Constitutive model and properties
- 4. Initial loading
- 5. History
- 6. Running
- 7. Analysis and plotting

- Define the problems and objectives
- 2. Create a conceptual model of the physical system, focus on simplifications
- Construct and run model(s)
- 4. Interpret results

- 1. Mesh generation
- 2. Boundary conditions
- 3. Constitutive model and properties
- 4. Initial loading
- 5. History
- 6. Running
- 7. Analysis and plotting

