
CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATIONCIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

Theory and
background 3:
Scripting

2019-01-09 – 2019-01-10

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

•Automation of workflow is the future

•Can use scripting languages to assign/read almost

anything from the models at precise moments in the

calculation scheme

•For example,

• Assign properties from a distribution

• Track convergence

• Automatic running and saving of different model cases

• Automatic creation of plots for all excavation stages

Why have a scripting language?

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

Scripting languages available in FLAC3D

FISH Python

Built in compatibility with model

information
Ex, read/write stresses, properties, deformations, etc.

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

How does everything fit together?

FISH

.fis

Python

.py

FLAC3D GUI/

commands

.dat

call .fis

set variables

call .py

set variables

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

How does everything fit together?

FISH

.fis

Python

.py

FLAC3D GUI/

commands

.dat

Run commands

Run commands

Run functions

Set variables

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

Typical advanced usage

Build geometry Assign properties,

initial stresses,

boundary

conditions, etc.

Run models

(equilibrium,

excavation stages),

save files, iterate

through cases

Post processing

Itasca’s Griddle
Commands

FISH

Python

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATIONCIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

A little extra on FISH…

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• FISH is the embedded scripting language for all Itasca programs

• Stands for “FLACish”, the language of FLAC, the first code it was
developed for.

• Allows access to virtually all internal data structures.

• FISH is pseudo-compiled into an intermediate language, like Java or

.NET

• We call it “Pseudo-Code” or Pcode. This can be listed and examined.

• Each function is compiled and stored in the model state.

• All global symbols are stored in the model state.

• Variable names and values can be monitored and changed at any
time.

• Help system has Tutorial and Reference

Introduction

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Custom Visualization

• Model Creation

• Flexible model setup and initialization.

• Initial stresses, custom geometry, adaptive excavation
sequencing

• Model Parameterizaton

• Setup a model once – run many variations with little to no
further effort.

• Multiple Model Run Control

• Optimizations and Inverse problems

• Physics Extension

• Add whole new physics to the model – ground freezing, etc.

Common ways FISH is used

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Just like a data file – any text editor

can be used.

• Built in text editor offers syntax

highlighting, context-sensitive help,

code folding, and auto formatting.

• FISH is case insensitive.

• Semi-colon is used for comments –

everything after is ignored.

• Command processor recognizes

FISH

• @ prefix

• [a=b] inline fragments

Writing FISH

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FLAC3D Editor – example.f3dat

Strings in

green

Keywords and functions in bold purple

Comments in gray

Variables in pink

Numbers in blue

Bad functions inverted

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Functions -- basic1.f3dat

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Integer: signed 64 bit

• Real: double precision floating point

• String: unicode compliant, can be any length

• Boolean: true or false

• Pointer: refers to an object (piece of data) in the code

• Vector: 2 or 3 dimensional vector

• Tensor: Symmetric 3D tensor (six values).

• Array: one or multi-dimensional array of FISH values. Passed by

reference.

• Matrix: 2D matrix of floating point values.

• Map: Associative array, keys can be integers, strings, or doubles.

• Structure: Experimental user defined aggregate type. For future expansion.

FISH Data Types

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Data Types – data.f3dat

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Set up a FISH function that defined bulk and shear properties as

parameters

• Create a 5x5x5 brick and load due to gravity

FISH Exercise – Parameterize a model

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Vectors

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Tensors

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Arrays

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Matrices

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Most operators work as expected: + - * /

• a = b + c

• e = f / g Warning: Integer division is not automatically promoted to float.

• - can be used as a unary prefix: b = a * (-b)

• The = assignment operator is a bit special, in that only one can appear on a line

• ^ is used as an exponent/power operator. a^b means ab.

• % is a modulus operator, ‘a % b’ is remainder of a/b. So 4%3 is 1. Also works

with real values.

• == < > # >= <= are all testing operators returning a Boolean. Can use = too

in if statement.

• & | ~ AND OR and NOT Boolean operators

• -> Member access operator, use with vectors, tensors, etc.

• Operator precedent order: ^ (unary)- / * % - + == > < # >= <= & | ~

FISH Operators

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• At last count FLAC3D had 1,470 built in intrinsic functions.

• 2,196 with PFC3D loaded.

• Help has master FISH intrinsic index

• CTRL-SPACE to look up

• F1 Context Help

• CAN execute alone on line, no = required

FISH Intrinsic Functions

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• local – global Create symbols

• if – else if – else – endif Conditional branching

• loop – endloop Looping

• continue – exit loop Loop control

• caseof – case – endcase Branching to multiple blocks

• section – endsection – exit section Start and end a section of code

• command – endcommand Execute FLAC3D commands

• exit Exit function

• Alternate forms: end_if, end_case, case_of, end_section,

end_command

FISH Statements

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• if expr then ; then is

optional

• else if expr then

• else

• endif

• expr is any expression that

evaluates to a Boolean or an

Integer (0 = false).

FISH Conditionals

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Four forms of LOOP

• loop var (start,end,<inc>)
…

endloop

• loop while expr
…

endloop

• loop for (initialize,test,modify)
…

endloop

• loop foreach var expr
…

endloop

FISH Looping

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH While Loop, For Loop

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Foreach loop, loop control

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Section – Exit Section – EndSection

•Method of jumping

forward in a function

•Skip lots of code,

without creating

deeply nested if

statements

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Caseof – case - endcase

•Code branching

faster and

simpler than lots

of else if

statements

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Command -- Endcommand

• FISH functions can

actually execute

commands

• Useful for things that

don’t have FISH

function equivalents

• Can actually create

new FISH

functions……

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

Pointers and linked lists

Pointers store

addresses to where

in the memory other

objects are

Linked lists are a

clever and flexible

way to use pointers

to connect data

head

NULL

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• All zones are contained in
zone.list.

• All grid points contained in gp.list.

• *All* zones point to 8 grid points

◦ Some some types will point to the
same grid point multiple times.

• *All* zones have six face join values

◦ Point to zone across that face

◦ Always null if face is degenerate

• Use function on left to assign values:
zone.stress(zone) =

tensor(1,2,3)

• See Help Index, F1, Ctrl-Space for

list of all zone and gp intrinsics!

FISH for FLAC3D: Zone and grid point
functions

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Make a 5x5x5 mesh, and list the positions of all the grid points

FISH for FLAC3D: Exercize – list grid
point positions

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Make a 5x5x5 mesh

• Assign elastic material model

• Vary bulk and shear modulus with depth:

◦𝐾 = 2

3
𝐸0+𝑐 𝑑𝑒𝑝𝑡ℎ

◦𝐺 = 2

5
𝐸0+𝑐 𝑑𝑒𝑝𝑡ℎ

◦𝐸0 = 1e7

◦c = 1e8

FISH for FLAC3D: Exercize – Vary
properties

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Each zone, grid point, and face can store FISH values.

◦ Any valid FISH value can be stored in each entry.

◦ Up to 128 in each object – be aware this uses memory!

• zone.extra(zone,index)

• gp.extra(zone,index)

• zone.face.extra(zone,face,index)

• For example: zone.extra(zone,3) = vector(3,4,5)

local v = zone.extra(zone,3)

• Extra values can be contoured: as scalars, vectors, or tensors

FISH for FLAC3D: Extra Variables

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Start with ‘varyprop’ model

• Add boundary conditions and reach initial equilibrium

• Calculate (szz + 2.0 / 5.0 * sxx) and store in extra 1.

FISH for FLAC3D: Exercise – Plot
Custom Value

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Every structural element points to 2 or 3 nodes: struct.node(elem,ind)

• Every node has 1 or 2 links:struct.node.link(node,<ind>)

• All structural elements (of all six types: beams, cables, piles, shells, liners,
geogrids) are stored in one global list: struct.list

• Structural nodes and links are stored in their own global list:

◦ struct.node.list

◦ struct.link.list

• Some element types share functions:

◦ Pointer to all six types of elements can be used with struct. functions.

◦ Pointers to Piles can be used with struct.beam. functions.

◦ Pointers Geogrid and Liners can be used with struct.shell. functions.

• Note that stress resultants and stresses must be calculated on the command line!

FISH for FLAC3D: Structural Element
Data

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

•FISH functions can be executed and their (real) return

values stored as histories.

•The fish history command:

•fish history name=‘fred’ @fred

•The symbol may not be a function, if so the current

value is retrieved.

•History values are retrieved in the order they are

declared.

• So a function taken first can set global values that
are taken later.

FISH for FLAC3D: Histories

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• The Geometry, Extruder, and Building-Blocks logic stores data in named “sets”.

• Each set has it’s own list of polygons, edges, nodes, etc.

• So functions need to pass set pointers in:

• For example, the following function lists the centroid of every polygon in a geometric set:

FISH for FLAC3D: Geometry, Extruder,
B-Blocks, etc

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• FISH can read and write to files.

◦ file.open

◦ file.close

◦ file.read

◦ file.write

◦ file.read.pointer

◦ file.pos

• There are some string functions

that are typically handy:

◦ string.token

◦ string.token.type

FISH Further Topics: File I/O

• file.open(name,opentype,file

type)

◦ Returns integer, 0 = no error

◦ opentype = 0: read
= 1: write and

overwrite
= 2: write and append

◦ filetype = 0: FISH mode
= 1: String mode
= 2: Binary mode

◦ This refers to a single global file.

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• file.read behavior depends on argument types and number.

• Simplest: file.read(arr,10)

◦ Reads 10 units from the global file and places them into array arr, assumed to
be a one dimensional array.

◦ Reads FISH values in FISH mode, lines as strings in String mode, and bytes as
integers in Binary mode.

• Pointer: file.read(arr,10,filepnt)

◦ Same as above, but reads from then file indicated by filepnt returned from
file.open.pointer.

• ReadAll: file.read(name,openmode,arr,num,<pos>)

◦ This version opens the file name and reads num units (based on openmode, as
in file.open) into array arr, then closes the file.

◦ pos, if given, indicates the file position (in bytes) to start at.

◦ Handy to read an entire file contents at once into a large array.

FISH Further Topics: File I/O - reading

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• file.write behaves the same as file.read.

• Simplest: file.write(arr,10)

◦ Writes 10 units from the global file and places them into array arr, assumed to be a one dimensional array.

◦ Writes FISH values in FISH mode and , lines as strings in String mode, and bytes as integers in Binary mode.

• Pointer: file.write(arr,10,filepnt)

◦ Same as above, but writes from then file indicated by filepnt returned from file.open.pointer.

• Read All: file.write(name,openmode,arr,num,<pos>)

◦ This version opens the file name and writes num units (based on openmode, as in file.open) into array arr, then closes
the file.

◦ pos, if given, indicates the file position (in bytes) to start at.

◦ Handy to write an entire array into a file at once.

FISH Further Topics: File I/O - writing

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Further Topics: File I/O - example

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Further Topics: File I/O - tokens

• string.token(str,i)

• Converts string str into ‘tokens’, using same rules as command processor.

• Spaces, tabs, parentheses (), commas, equals are all token delimiters.

• Returns contents at ith token, interpreted as parameter (integer, real, or string).

• So the string ‘Fred has 6 silly monkeys with 5.5 hairs’ will have:

◦ 8 tokens

◦ Tokens 1,2,4,5,6,8 will return strings ‘Fred’, ‘has’, ‘silly’, ‘monkeys’, ‘with’, and ‘hairs’

◦ Token 3 will return the integer 6

◦ Token 7 will return the real 5.5

• string.token.type(str,i) uses the same rules but returns type

◦ So Tokens 1,2,4,5,6,8 will return 3 = string

◦ Token 3 will return 1 = integer

◦ Token 7 will return 2 = real

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Further Topics: File I/O - example

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Further Topics: Callbacks while
cycling

• FISH histories are an example of FISH calls during cycling.

• fish callback

• The fish and fish-local modifiers to zone face apply and zone apply.

• model solve fish-call and model solve fish-halt.

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Further Topics: Callbacks while
cycling

• FISH histories are an example of FISH calls during cycling.

• fish callback

• The fish and fish-local modifiers to zone face apply and zone apply.

• model solve fish-call and model solve fish-halt.

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Further Topics: Callbacks while
cycling

◦ -10 Validate zones

◦ -9.5 Validate structural element dynamic

◦ -2 Validate things that couple to zones

◦ -1 Validate zone dynamic

◦ 0 Calculate timestep

◦ 20 Increment time

◦ 39 Zero zone grid point values

◦ 41 Calculate zone stress increments from strain increments

◦ 41.15 Structural element initialize node values

◦ 41.16 Structural element constitutive first

◦ 41.17 Structural element constitutive second

◦ 60.5 Zone attach send forces

◦ 61 Zone grid point equations of motion

◦ 61.1 Read velocities from attach conditions

◦ 61.15 Structural element equation of motion

◦ 61.2 Zone thermal coupling

◦ 62 Zone thermal calculations

◦ 81 Zone fluid flow calculations

◦ 81.1 Zone stress coupling to fluid flow

◦ 81.2 Zone fluid particle tracking

◦ 100 Calculate zone convergence criteria

◦ 101 Calculate structural element convergence criteria

• fish callback add @name t

<keyword>

• The fish function name is called at time index

t in the cycle sequence (listed at right).

• Can specify interval n so it is only called

every n steps.

• Can specify process fluid (for example) so

it is only called when fluid is active.

• Can use a floating point time index to insert

yourself at any point in the cycle index.

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Further Topics: zone face apply
callbacks
• A fish @name multiplier can be specified.

• The function is called every cycle, and the value returned is multiplied by the base

value given to the apply command.

CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

FISH Further Topics: zone field data
• Zone data can be calculated at any location inside a zone.

