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•Automation of workflow is the future

•Can use scripting languages to assign/read almost 

anything from the models at precise moments in the 

calculation scheme

•For example,

• Assign properties from a distribution

• Track convergence

• Automatic running and saving of different model cases

• Automatic creation of plots for all excavation stages

Why have a scripting language?
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Scripting languages available in FLAC3D

FISH Python

Built in compatibility with model

information
Ex, read/write stresses, properties, deformations, etc.
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How does everything fit together?

FISH

.fis

Python

.py

FLAC3D GUI/

commands

.dat

call .fis

set variables

call .py

set variables
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How does everything fit together?

FISH

.fis

Python

.py

FLAC3D GUI/

commands

.dat

Run commands

Run commands

Run functions

Set variables
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Typical advanced usage

Build geometry Assign properties, 

initial stresses, 

boundary

conditions, etc.

Run models

(equilibrium, 

excavation stages), 

save files, iterate

through cases

Post processing

Itasca’s Griddle
Commands

FISH

Python
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A little extra on FISH…
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• FISH is the embedded scripting language for all Itasca programs

• Stands for “FLACish”, the language of FLAC, the first code it was 
developed for.

• Allows access to virtually all internal data structures.

• FISH is pseudo-compiled into an intermediate language, like Java or 

.NET

• We call it “Pseudo-Code” or Pcode.  This can be listed and examined.

• Each function is compiled and stored in the model state.

• All global symbols are stored in the model state.

• Variable names and values can be monitored and changed at any 
time.

• Help system has Tutorial and Reference

Introduction
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• Custom Visualization

• Model Creation

• Flexible model setup and initialization.  

• Initial stresses, custom geometry, adaptive excavation 
sequencing

• Model Parameterizaton

• Setup a model once – run many variations with little to no 
further effort.

• Multiple Model Run Control

• Optimizations and Inverse problems

• Physics Extension

• Add whole new physics to the model – ground freezing, etc.

Common ways FISH is used
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• Just like a data file – any text editor 

can be used.

• Built in text editor offers syntax 

highlighting, context-sensitive help, 

code folding, and auto formatting.

• FISH is case insensitive.

• Semi-colon is used for comments –

everything after is ignored.

• Command processor recognizes 

FISH

• @ prefix

• [  a=b ] inline fragments

Writing FISH
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FLAC3D Editor – example.f3dat

Strings in 

green

Keywords and functions in bold purple

Comments  in gray

Variables  in pink

Numbers  in blue

Bad functions inverted
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FISH Functions  -- basic1.f3dat
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• Integer: signed 64 bit

• Real: double precision floating point

• String: unicode compliant, can be any length

• Boolean: true or false

• Pointer: refers to an object (piece of data) in the code

• Vector: 2 or 3 dimensional vector

• Tensor: Symmetric 3D tensor (six values).

• Array: one or multi-dimensional array of FISH values.  Passed by 

reference.

• Matrix: 2D matrix of floating point values.  

• Map: Associative array, keys can be integers, strings, or doubles.  

• Structure: Experimental user defined aggregate type. For future expansion.

FISH Data Types
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FISH Data Types – data.f3dat



CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Set up a FISH function that defined bulk and shear properties as 

parameters

• Create a 5x5x5 brick and load due to gravity

FISH Exercise – Parameterize a model
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FISH Vectors
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FISH Tensors
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FISH Arrays
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FISH Matrices
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• Most operators work as expected:    +  - *  /   

• a = b + c  

• e = f / g Warning: Integer division is not automatically promoted to float.

• - can be used as a unary prefix:     b = a * (-b)

• The = assignment operator is a bit special, in that only one can appear on a line

• ^ is used as an exponent/power operator.    a^b means ab.

• % is a modulus operator, ‘a % b’ is remainder of a/b.  So 4%3 is 1.  Also works 

with real values.

• ==  <  >   #  >=  <= are all testing operators returning a Boolean.  Can use = too 

in if statement.

• & | ~   AND  OR and NOT Boolean operators

• -> Member access operator, use with vectors, tensors, etc.

• Operator precedent order:    ^  (unary)- /  *  %  - +  ==  >  <  #  >=  <=  &  |  ~

FISH Operators
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• At last count FLAC3D had 1,470 built in intrinsic functions.

• 2,196 with PFC3D loaded.

• Help has master FISH intrinsic index

• CTRL-SPACE to look up 

• F1 Context Help

• CAN execute alone on line, no = required

FISH Intrinsic Functions
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• local – global Create symbols

• if – else if – else – endif Conditional branching

• loop – endloop Looping

• continue – exit loop Loop control

• caseof – case – endcase Branching to multiple blocks 

• section – endsection – exit section Start and end a section of code

• command – endcommand Execute FLAC3D commands

• exit Exit function

• Alternate forms:  end_if, end_case, case_of, end_section, 

end_command

FISH Statements
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• if expr then ;  then is 

optional

• else if expr then

• else

• endif

• expr is any expression that 

evaluates to a Boolean or an 

Integer (0 = false).

FISH Conditionals
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• Four forms of LOOP

• loop var (start,end,<inc>)
…

endloop

• loop while expr
…

endloop

• loop for (initialize,test,modify)
…

endloop

• loop foreach var expr
…

endloop

FISH Looping
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FISH While Loop, For Loop
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FISH Foreach loop, loop control
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FISH Section – Exit Section – EndSection

•Method of jumping 

forward in a function

•Skip lots of code, 

without creating 

deeply nested if 

statements
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FISH Caseof – case - endcase

•Code branching 

faster and 

simpler than lots 

of else if 

statements
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FISH Command -- Endcommand

• FISH functions can 

actually execute 

commands

• Useful for things that 

don’t have FISH

function equivalents

• Can actually create 

new FISH

functions……
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Pointers and linked lists

Pointers store 

addresses to where

in the memory other

objects are

Linked lists are a 

clever and flexible 

way to use pointers 

to connect data

head

NULL
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• All zones are contained in 
zone.list.

• All grid points contained in gp.list.

• *All* zones point to 8 grid points

◦ Some some types will point to the 
same grid point multiple times.

• *All* zones have six face join values

◦ Point to zone across that face

◦ Always null if face is degenerate

• Use function on left to assign values:
zone.stress(zone) = 

tensor(1,2,3)

• See Help Index, F1, Ctrl-Space for 

list of all zone and gp intrinsics!

FISH for FLAC3D: Zone and grid point 
functions
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• Make a 5x5x5 mesh, and list the positions of all the grid points

FISH for FLAC3D: Exercize – list grid 
point positions
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• Make a 5x5x5 mesh

• Assign elastic material model

• Vary bulk and shear modulus with depth:

◦𝐾 = 2

3
𝐸0+𝑐 𝑑𝑒𝑝𝑡ℎ

◦𝐺 = 2

5
𝐸0+𝑐 𝑑𝑒𝑝𝑡ℎ

◦𝐸0 = 1e7

◦c = 1e8

FISH for FLAC3D: Exercize – Vary 
properties
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• Each zone, grid point, and face can store FISH values.

◦ Any valid FISH value can be stored in each entry.

◦ Up to 128 in each object – be aware this uses memory!

• zone.extra(zone,index)

• gp.extra(zone,index)

• zone.face.extra(zone,face,index)

• For example: zone.extra(zone,3) = vector(3,4,5)

local v = zone.extra(zone,3)

• Extra values can be contoured:  as scalars, vectors, or tensors

FISH for FLAC3D: Extra Variables



CIVIL ● MANUFACTURING ● MINING ● OIL & GAS ● POWER GENERATION

• Start with ‘varyprop’ model

• Add boundary conditions and reach initial equilibrium

• Calculate (szz + 2.0 / 5.0 * sxx) and store in extra 1.

FISH for FLAC3D: Exercise – Plot 
Custom Value
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• Every structural element points to 2 or 3 nodes:   struct.node(elem,ind)

• Every node has 1 or 2 links:struct.node.link(node,<ind>)

• All structural elements (of all six types:  beams, cables, piles,  shells, liners, 
geogrids) are stored in one global list:     struct.list

• Structural nodes and links are stored in their own global list:

◦ struct.node.list

◦ struct.link.list

• Some element types share functions:

◦ Pointer to all six types of elements can be used with struct. functions.

◦ Pointers to Piles can be used with struct.beam. functions.

◦ Pointers Geogrid and Liners can be used with struct.shell. functions.

• Note that stress resultants and stresses must be calculated on the command line!

FISH for FLAC3D: Structural Element 
Data
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•FISH functions can be executed and their (real) return 

values stored as histories.

•The fish history command:

•fish history name=‘fred’ @fred

•The symbol may not be a function, if so the current 

value is retrieved.

•History values are retrieved in the order they are 

declared.

• So a function taken first can set global values that 
are taken later.

FISH for FLAC3D: Histories
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• The Geometry, Extruder, and Building-Blocks logic stores data in named “sets”.

• Each set has it’s own list of polygons, edges, nodes, etc.

• So functions need to pass set pointers in:

• For example, the following function lists the centroid of every polygon in a geometric set:

FISH for FLAC3D: Geometry, Extruder, 
B-Blocks, etc
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• FISH can read and write to files.

◦ file.open

◦ file.close

◦ file.read

◦ file.write

◦ file.read.pointer

◦ file.pos

• There are some string functions 

that are typically handy:

◦ string.token

◦ string.token.type

FISH Further Topics:   File I/O

• file.open(name,opentype,file

type)

◦ Returns integer, 0 = no error

◦ opentype = 0:  read
= 1:  write and 

overwrite
= 2:  write and append

◦ filetype = 0:  FISH mode
= 1:  String mode
= 2:  Binary mode

◦ This refers to a single global file.
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• file.read behavior depends on argument types and number.

• Simplest:  file.read(arr,10)

◦ Reads 10 units from the global file and places them into array arr, assumed to 
be a one dimensional array.

◦ Reads FISH values in FISH mode, lines as strings in String mode, and bytes as 
integers in Binary mode.

• Pointer: file.read(arr,10,filepnt)

◦ Same as above, but reads from then file indicated by filepnt returned from 
file.open.pointer.

• ReadAll: file.read(name,openmode,arr,num,<pos>)

◦ This version opens the file name and reads num units (based on openmode, as 
in file.open) into array arr, then closes the file.

◦ pos, if given, indicates the file position (in bytes) to start at.

◦ Handy to read an entire file contents at once into a large array.

FISH Further Topics:   File I/O - reading
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• file.write behaves the same as file.read.

• Simplest:  file.write(arr,10)

◦ Writes 10 units from the global file and places them into array arr, assumed to be a one dimensional array.

◦ Writes FISH values in FISH mode and , lines as strings in String mode, and bytes as integers in Binary mode.

• Pointer: file.write(arr,10,filepnt)

◦ Same as above, but writes from then file indicated by filepnt returned from file.open.pointer.

• Read All: file.write(name,openmode,arr,num,<pos>)

◦ This version opens the file name and writes num units (based on openmode, as in file.open) into array arr, then closes 
the file.

◦ pos, if given, indicates the file position (in bytes) to start at.

◦ Handy to write an entire array into a file at once.

FISH Further Topics:   File I/O - writing
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FISH Further Topics:   File I/O - example
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FISH Further Topics:   File I/O - tokens

• string.token(str,i)

• Converts string str into ‘tokens’, using same rules as command processor.

• Spaces, tabs, parentheses (), commas, equals are all token delimiters.

• Returns contents at ith token, interpreted as parameter (integer, real, or string).

• So the string ‘Fred has 6 silly monkeys with 5.5 hairs’ will have:

◦ 8 tokens

◦ Tokens 1,2,4,5,6,8 will return strings ‘Fred’, ‘has’, ‘silly’, ‘monkeys’, ‘with’, and ‘hairs’

◦ Token 3 will return the integer 6

◦ Token 7 will return the real 5.5

• string.token.type(str,i) uses the same rules but returns type

◦ So Tokens 1,2,4,5,6,8 will return 3 = string

◦ Token 3 will return 1 = integer

◦ Token 7 will return 2 = real
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FISH Further Topics:   File I/O - example
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FISH Further Topics:   Callbacks while 
cycling

• FISH histories are an example of FISH calls during cycling.

• fish callback

• The fish and fish-local modifiers to zone face apply and zone apply.

• model solve fish-call and model solve fish-halt.
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FISH Further Topics:   Callbacks while 
cycling

• FISH histories are an example of FISH calls during cycling.

• fish callback

• The fish and fish-local modifiers to zone face apply and zone apply.

• model solve fish-call and model solve fish-halt.
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FISH Further Topics:   Callbacks while 
cycling

◦ -10 Validate zones

◦ -9.5                     Validate structural element dynamic 

◦ -2 Validate things that couple to zones

◦ -1 Validate zone dynamic

◦ 0 Calculate timestep

◦ 20 Increment time

◦ 39 Zero zone grid point values

◦ 41 Calculate zone stress increments from strain increments

◦ 41.15 Structural element initialize node values

◦ 41.16 Structural element constitutive first

◦ 41.17 Structural element constitutive second

◦ 60.5 Zone attach send forces

◦ 61 Zone grid point equations of motion

◦ 61.1 Read velocities from attach conditions

◦ 61.15 Structural element equation of motion

◦ 61.2 Zone thermal coupling

◦ 62 Zone thermal calculations

◦ 81 Zone fluid flow calculations

◦ 81.1 Zone stress coupling to fluid flow

◦ 81.2 Zone fluid particle tracking

◦ 100 Calculate zone convergence criteria

◦ 101 Calculate structural element convergence criteria

• fish callback add @name t 

<keyword>

• The fish function name is called at time index

t in the cycle sequence (listed at right).

• Can specify interval n so it is only called 

every n steps.

• Can specify process fluid (for example) so 

it is only called when fluid is active.

• Can use a floating point time index to insert 

yourself at any point in the cycle index.
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FISH Further Topics:   zone face apply 
callbacks
• A fish @name multiplier can be specified.  

• The function is called every cycle, and the value returned is multiplied by the base 

value given to the apply command.
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FISH Further Topics:   zone field data
• Zone data can be calculated at any location inside a zone.


