

PHOTOGRAMMETRY IN ENGINEERING GEOLOGY, THEORY, METHODS AND EXAMPLES

Freddy Yugsi Engineering Geologist, Sweco Norge

> Vårsleppet 2020 05.03.2020

Freddy Yugsi

Engineering Geologist at Sweco

Trondheim, Sør-Trøndelag, Norway · :

Education

Eidgenössische Technische Hochschule Zürich

PhD, Engineering Geology 2006 – 2010 Experience

Sweco

4 yrs 10 mos

Full-time

Jan 2019 – Present · 1 yr 3 mos Trondheim Area, Norway

Geotechnical Engineer

Jun 2015 – Present · 4 yrs 10 mos Trondheim Area, Norway

Researcher

Geological Survey of Norway

Aug 2011 – Jun 2015 · 3 yrs 11 mos Trondheim Area, Norway

Natural Hazards Division, Landslides Department

Postdoc

Norwegian Geotechnical Institute (NGI)

Jan 2011 – Aug 2011 · 8 mos

Outline

- Introduction
- Image based 3D modelling
- Classic Aerial Photogrammetry
- UAV Photogrammetry
- Necessary equipment
- Rock mass characterization: Automatic registration (Coltop) vs. Semi-automatic registration (Shapemetrix)
- Model comparison and volume calculation

Introduction

- Based on image matching and triangulation
- Produces Digital Elevation Models, Orthophotos, Textured 3D Objects
- Wide use and applications from regional studies (e.g. inventories) to detailed mapping (e.g. rock mass characterization)
- Allows multi-temporal analysis of large areas
- Products are easy to integrate with other datasets using GIS/CAD
- Robust commercial and open source software

Introduction

- The use of optical imagery is a standard technique for several applications on detection, characterization and monitoring
- Two scales:
 - Regional analysis (aerial-based)
 - Local analysis (close range)

Eisenbeiss, 2009

Image-based 3D modelling

Aerial Photogrammetry

Three software packages used:

- LPS (LeicaPhotogrammetry Suite)
- BUN
- SAT-PP (Satellite Imagery Precision Processing)

Processing includes:

- Project definition
- Interior orientation computation
- Measurement of tie and control points
- Bundle adjustment
- Image triangulation
- Absolute orientation
- DSM generation
- Orthophoto production.

Aerial Photogrammetry

Puerto Aysén, Southern Chile

11 panchromatic aerial photographs (1998).

Georeferencing used 10 dGPS points collected in January 2011.

Area: 550 km²

Pixel resolution: 7 m

The Punta Cola Rockslide, Chile

Yugsi et al., 2011

Orthophoto shows a retreat of the shoreline of about 100 m.

Higher erosion on west flank of the valley.

Part of the rock debris deposited close to the source.

Image-based 3D modelling

UAV Photogrammetry

One program used:

Agisoft Metashape Professional

Processing includes:

- Project definition (pictures and GPS points)
- Interior orientation computation (Alignment)
- Measurement of tie and control points (Included in project definition. Additional TP if needed)
- Bundle adjustment (Dense Point Cloud generation)
- Image triangulation (Mesh generation)
- DEM generation
- Orthophoto production.

UAV Photogrammetry

Equipment

- Flexible implementation.
- Setup for image acquisition can be designed based on:
 - Available equipment
 - Access to the surveyed object
 - Expected resolution and accuracy
 - Purpose
- Classic Aerial Photogrammetry: Airborne vehicles, Inertial Measurement Units, Metric cameras (costly)
- Ground Based Photogrammetry: DSLR cameras, prebuild targets and D-GPS antenna(s) (D-POS, C-POS)
- Unmanned Aerial Vehicle photogrammetry (Structure from motion): UAV (drone), D-GPS antenna(s) (D-POS, C-POS), targets

Standard setups can be adjusted if/when other types of equipment are available

Photogrammetry for engineering geology applications

- The main application of photogrammetry in engineering geology is for structural characterization of rock masses.
- Two main types of programs exist.
- Main difference resides on how structural data is registered.
- Other tools available for engineering geology for 3D model comparison

Automatic registration (e.g. COLTOP)

- Developed by the engineering geology group at UNIL, Switzerland
- Imports LiDAR and photogrammetric 3D point clouds
- Software computes automatically for each point an estimation of its orientation
- Orientation data is visualized with individual colors for each dip/direction combinations
- Orientation can be also shown on stereonet plots

Semi-automatic registration (e.g. Shapemetrix)

- Developed by 3GSM a spin off company from Graz University, Austria
- 3D model is generated by the software.
- It can use GPS coordinates for geo-referencing
- User draws over the model to select features (discontinuities). The program automatically fits all vertices of the drawn object in a plane using minimum squares and extract its orientation.
- Orientations can be plotted on a stereonet
- Can compare two 3D models to calculate volume variation
- Data (point cloud and orientations) can be exported to other programs.

Nordmelansfossen, Trøndelag, Norway 56 images, No Control points DJI Phantom 4 Pro

Semi-automatic registration (e.g. Shapemetrix)

- Developed by 3GSM a spin off company from Graz University, Austria
- 3D model is generated by the software.
- It can use GPS coordinates for geo-referencing
- User draws over the model to select features
 (discontinuities). The program automatically fits all
 vertices of the drawn object in a plane using minimum
 squares and extract its orientation.
- Orientations can be plotted on a stereonet
- Can compare two 3D models to calculate volume variation
- Data (point cloud and orientations) can be exported to other programs.

Semi-automatic registration (e.g. Shapemetrix)

- Developed by 3GSM a spin off company from Graz University, Austria
- 3D model is generated by the software.
- It can use GPS coordinates for geo-referencing
- User draws over the model to select features
 (discontinuities). The program automatically fits all
 vertices of the drawn object in a plane using minimum
 squares and extract its orientation.
- Orientations can be plotted on a stereonet
- Can compare two 3D models to calculate volume variation
- Data (point cloud and orientations) can be exported to other programs.

Model comparison – Volume estimation

Skarvåsen, Trøndelag Model 1:

91 images, No Control points DJI Phantom 4 Pro RTK

Area: ca. 8000 m²

Model 2:

125 images, No Control points (RTK)

DJI Phantom 4 Pro RTK

Area: ca. 2500 m²

Model comparison - Volume estimation

Model comparison — Volume estimation

Model comparison

Coarse scene density: high
Camera parameters optimized: yes

Started: 2020/02/10 - 10:00:47

Finished: 2020/02/10 - 11:13:09

Computation time: 1h 12m 22s

Cameras added: 125 / 125

World points added: 173 210

Image observations added: 1 172 707

Mean world point observations: 6.77

Ground sample distance mean: 0.004 m

	mean	std.dev.	med	max
EXIF GPS residuals:	0.022 m	0.012 m	0.020 m	0.055 m

SWECO 😤